upm_guru_kcp/Runtime/csharp-kcp/dotNetty-kcp/thread/RingBuffer.cs

316 lines
10 KiB
C#
Raw Permalink Normal View History

2023-08-30 05:50:21 +00:00
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using System.Threading;
namespace dotNetty_kcp.thread
{
public class RingBuffer<T>
{
private readonly T[] _entries;
private readonly int _modMask;
private Volatile.PaddedLong _consumerCursor = new Volatile.PaddedLong();
private Volatile.PaddedLong _producerCursor = new Volatile.PaddedLong();
/// <summary>
/// Creates a new RingBuffer with the given capacity
/// </summary>
/// <param name="capacity">The capacity of the buffer</param>
/// <remarks>Only a single thread may attempt to consume at any one time</remarks>
public RingBuffer(int capacity)
{
capacity = NextPowerOfTwo(capacity);
_modMask = capacity - 1;
_entries = new T[capacity];
}
/// <summary>
/// The maximum number of items that can be stored
/// </summary>
public int Capacity
{
get { return _entries.Length; }
}
public T this[long index]
{
get
{
unchecked
{
return _entries[index & _modMask];
}
}
set
{
unchecked
{
_entries[index & _modMask] = value;
}
}
}
/// <summary>
/// Removes an item from the buffer.
/// </summary>
/// <returns>The next available item</returns>
public T Dequeue()
{
var next = _consumerCursor.ReadAcquireFence() + 1;
while (_producerCursor.ReadAcquireFence() < next
) // makes sure we read the data from _entries after we have read the producer cursor
{
Thread.SpinWait(1);
}
var result = this[next];
_consumerCursor
.WriteReleaseFence(
next); // makes sure we read the data from _entries before we update the consumer cursor
return result;
}
/// <summary>
/// Attempts to remove an items from the queue
/// </summary>
/// <param name="obj">the items</param>
/// <returns>True if successful</returns>
public bool TryDequeue(out T obj)
{
var next = _consumerCursor.ReadAcquireFence() + 1;
if (_producerCursor.ReadAcquireFence() < next)
{
obj = default(T);
return false;
}
obj = Dequeue();
return true;
}
/// <summary>
/// Add an item to the buffer
/// </summary>
/// <param name="item"></param>
public void Enqueue(T item)
{
var next = _producerCursor.ReadAcquireFence() + 1;
long wrapPoint = next - _entries.Length;
long min = _consumerCursor.ReadAcquireFence();
while (wrapPoint > min)
{
min = _consumerCursor.ReadAcquireFence();
Thread.SpinWait(1);
}
this[next] = item;
_producerCursor
.WriteReleaseFence(
next); // makes sure we write the data in _entries before we update the producer cursor
}
/// <summary>
/// Add an item to the buffer
/// </summary>
/// <param name="item"></param>
public bool tryEnqueue(T item)
{
var next = _producerCursor.ReadAcquireFence() + 1;
long wrapPoint = next - _entries.Length;
long min = _consumerCursor.ReadAcquireFence();
if (wrapPoint>min)
{
return false;
}
this[next] = item;
_producerCursor
.WriteReleaseFence(
next); // makes sure we write the data in _entries before we update the producer cursor
return true;
}
/// <summary>
/// The number of items in the buffer
/// </summary>
/// <remarks>for indicative purposes only, may contain stale data</remarks>
public int Count
{
get { return (int) (_producerCursor.ReadFullFence() - _consumerCursor.ReadFullFence()); }
}
private static int NextPowerOfTwo(int x)
{
var result = 2;
while (result < x)
{
result <<= 1;
}
return result;
}
}
public static class Volatile
{
private const int CacheLineSize = 64;
[StructLayout(LayoutKind.Explicit, Size = CacheLineSize * 2)]
public struct PaddedLong
{
[FieldOffset(CacheLineSize)] private long _value;
/// <summary>
/// Create a new <see cref="PaddedLong"/> with the given initial value.
/// </summary>
/// <param name="value">Initial value</param>
public PaddedLong(long value)
{
_value = value;
}
/// <summary>
/// Read the value without applying any fence
/// </summary>
/// <returns>The current value</returns>
public long ReadUnfenced()
{
return _value;
}
/// <summary>
/// Read the value applying acquire fence semantic
/// </summary>
/// <returns>The current value</returns>
public long ReadAcquireFence()
{
var value = _value;
Thread.MemoryBarrier();
return value;
}
/// <summary>
/// Read the value applying full fence semantic
/// </summary>
/// <returns>The current value</returns>
public long ReadFullFence()
{
Thread.MemoryBarrier();
return _value;
}
/// <summary>
/// Read the value applying a compiler only fence, no CPU fence is applied
/// </summary>
/// <returns>The current value</returns>
[MethodImpl(MethodImplOptions.NoOptimization)]
public long ReadCompilerOnlyFence()
{
return _value;
}
/// <summary>
/// Write the value applying release fence semantic
/// </summary>
/// <param name="newValue">The new value</param>
public void WriteReleaseFence(long newValue)
{
Thread.MemoryBarrier();
_value = newValue;
}
/// <summary>
/// Write the value applying full fence semantic
/// </summary>
/// <param name="newValue">The new value</param>
public void WriteFullFence(long newValue)
{
Thread.MemoryBarrier();
_value = newValue;
}
/// <summary>
/// Write the value applying a compiler fence only, no CPU fence is applied
/// </summary>
/// <param name="newValue">The new value</param>
[MethodImpl(MethodImplOptions.NoOptimization)]
public void WriteCompilerOnlyFence(long newValue)
{
_value = newValue;
}
/// <summary>
/// Write without applying any fence
/// </summary>
/// <param name="newValue">The new value</param>
public void WriteUnfenced(long newValue)
{
_value = newValue;
}
/// <summary>
/// Atomically set the value to the given updated value if the current value equals the comparand
/// </summary>
/// <param name="newValue">The new value</param>
/// <param name="comparand">The comparand (expected value)</param>
/// <returns></returns>
public bool AtomicCompareExchange(long newValue, long comparand)
{
return Interlocked.CompareExchange(ref _value, newValue, comparand) == comparand;
}
/// <summary>
/// Atomically set the value to the given updated value
/// </summary>
/// <param name="newValue">The new value</param>
/// <returns>The original value</returns>
public long AtomicExchange(long newValue)
{
return Interlocked.Exchange(ref _value, newValue);
}
/// <summary>
/// Atomically add the given value to the current value and return the sum
/// </summary>
/// <param name="delta">The value to be added</param>
/// <returns>The sum of the current value and the given value</returns>
public long AtomicAddAndGet(long delta)
{
return Interlocked.Add(ref _value, delta);
}
/// <summary>
/// Atomically increment the current value and return the new value
/// </summary>
/// <returns>The incremented value.</returns>
public long AtomicIncrementAndGet()
{
return Interlocked.Increment(ref _value);
}
/// <summary>
/// Atomically increment the current value and return the new value
/// </summary>
/// <returns>The decremented value.</returns>
public long AtomicDecrementAndGet()
{
return Interlocked.Decrement(ref _value);
}
/// <summary>
/// Returns the string representation of the current value.
/// </summary>
/// <returns>the string representation of the current value.</returns>
public override string ToString()
{
var value = ReadFullFence();
return value.ToString();
}
}
}
}